Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(3): e9887, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36937058

RESUMEN

On Madagascar, the illegal and unsustainable exploitation and illegal international trade of Dalbergia (rosewood) precious woods remain a serious conservation problem. Members of this genus are at high risk of extinction as a consequence of logging, mining, and slash and burn agriculture. Morphological identification of these Malagasy species is difficult in the absence of flowers and fruits, especially in the case of cut trees, sawn wood, and finished product. In this study, we use molecular barcoding to identify the Dalbergia species with the intent to contribute to the control of their illegal trade. Thirty-six Dalbergia samples representing 12 Malagasy species of which 11 have high commercial value, were collected to test the efficacy of a region of the plastid genome (rbcL) and a nuclear-transcribed ITS for barcoding. These widely used markers, as well as DNA barcoding gaps, "best match" and "best close match" approaches, and the neighbor-joining method were employed. All samples were amplified and sequenced using the two markers. Using a single locus, the "best match" and "best close match" approaches revealed that ITS has high discriminatory power within the tested Malagasy species. The combination of rbcL + ITS revealed 100% species discrimination. This study confirms that ITS alone and in combination with chloroplast barcode rbcL allow non-ambiguous identification for the 12 species studied. The results contribute to the development of DNA barcoding as a useful tool to identify Malagasy Dalbergia and suggest that the approach developed should be expanded to all 56 potentially exploited species in reference to international CITES requirements and the sustainable management of valuable resources.

2.
Glob Chang Biol ; 27(23): 6071-6085, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34418236

RESUMEN

It is commonly accepted that species should move toward higher elevations and latitudes to track shifting isotherms as climate warms. However, temperature might not be the only limiting factor determining species distribution. Species might move to opposite directions to track changes in other climatic variables. Here, we used an extensive occurrence data set and an ensemble modelling approach to model the climatic niche and to predict the distribution of the seven baobab species (genus Adansonia) present in Madagascar. Using climatic projections from three global circulation models, we predicted species' future distribution and extinction risk for 2055 and 2085 under two representative concentration pathways (RCPs) and two dispersal scenarios. We disentangled the role of each climatic variable in explaining species range shift looking at relative variable importance and future climatic anomalies. Four baobab species (Adansonia rubrostipa, Adansonia madagascariensis, Adansonia perrieri¸ and Adansonia suarezensis) could experience a severe range contraction in the future (>70% for year 2085 under RCP 8.5, assuming a zero-dispersal hypothesis). For three out of the four threatened species, range contraction was mainly explained by an increase in temperature seasonality, especially in the North of Madagascar, where they are currently distributed. In tropical regions, where species are commonly adapted to low seasonality, we found that temperature seasonality will generally increase. It is, thus, very likely that many species in the tropics will be forced to move equatorward to avoid an increase in temperature seasonality. Yet, several ecological (e.g., equatorial limit, or unsuitable deforested habitat) or geographical barriers (absence of lands) could prevent species to move equatorward, thus increasing the extinction risk of many tropical species, like endemic baobab species in Madagascar.


Asunto(s)
Adansonia , Cambio Climático , Ecosistema , Geografía , Madagascar , Temperatura
3.
Chem Biodivers ; 14(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28212461

RESUMEN

Baobab seed oil contains specific fatty acids. Most of the studies on baobab fatty acids have been carried out singly and in isolation from each other, making it difficult to compare results through different species. The objective of the present study is to establish the seed fatty acid composition of each Adansonia species in order to evaluate and understand the relationships between the oil chemical compositions, the baobabs' taxonomy and, the ecological and geographical origin of each seed lot. The seed oils have been analysed using gas chromatography (GC). The oils of all baobab species contain three major fatty acids: palmitic, oleic and linoleic acids. They also contain specific fatty acids such as cyclopropenic and cyclopropanic acids, which are characteristic of the Malvaceae family seed oils. It was possible to distinguish three sections through principal components analysis using the eleven fatty acids identified by GC. The Adansonia section contains high rates of oleic acid (± 35%), the Brevitubae section is rich in palmitic acid (± 42%) and the Longitubae section contains high levels of dihydrosterulic acid (± 5%). The oil fatty acid composition, however, does not enable a definitive characterization of profiles according to species. The fatty acid composition is not significantly influenced by the geographical, soil and climate conditions of the collection sites.


Asunto(s)
Adansonia/metabolismo , Ácidos Grasos/análisis , Cromatografía de Gases , Análisis por Conglomerados , Ácido Oléico/análisis , Aceites de Plantas/química , Análisis de Componente Principal , Semillas/metabolismo
4.
PLoS One ; 11(1): e0146977, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26760300

RESUMEN

The article reports the radiocarbon investigation of Anzapalivoro, the largest za baobab (Adansonia za) specimen of Madagascar and of another za, namely the Big cistern baobab. Several wood samples collected from the large inner cavity and from the outer part/exterior of the tree were investigated by AMS (accelerator mass spectrometry) radiocarbon dating. For samples collected from the cavity walls, the age values increase with the distance into the wood up to a point of maximum age, after which the values decrease toward the outer part. This anomaly of age sequences indicates that the inner cavity of Anzapalivoro is a false cavity, practically an empty space between several fused stems disposed in a ring-shaped structure. The radiocarbon date of the oldest sample was 780 ± 30 bp, which corresponds to a calibrated age of around 735 yr. Dating results indicate that Anzapalivoro has a closed ring-shaped structure, which consists of 5 fused stems that close a false cavity. The oldest part of the biggest za baobab has a calculated age of 900 years. We also disclose results of the investigation of a second za baobab, the Big cistern baobab, which was hollowed out for water storage. This specimen, which consists of 4 fused stems, was found to be around 260 years old.


Asunto(s)
Adansonia , Espectrometría de Masas/métodos , Datación Radiométrica/métodos , Calibración , Ecología , Bosques , Geografía , Madagascar , Factores de Tiempo , Árboles , Madera
5.
Ann Bot ; 112(9): 1759-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24187031

RESUMEN

BACKGROUND AND AIMS: Adansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar. METHODS: Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment. KEY RESULTS: Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species. CONCLUSIONS: The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.


Asunto(s)
Hibridación Genética , Malvaceae/genética , Alelos , Variación Genética , Madagascar , Repeticiones de Microsatélite , Filogeografía
6.
Mol Ecol ; 18(8): 1707-15, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19302348

RESUMEN

The African baobab (Adansonia digitata L.) is an emblematic, culturally important, and physically huge tropical tree species whose natural geographical distribution comprises most of tropical Africa, but also small patches of southern Arabia, and several Atlantic and Indian Ocean islands surrounding the African continent, notably including Madagascar. We analysed the polymerase chain reaction-restriction fragment length polymorphism of five chloroplast DNA fragments obtained from 344 individuals of A. digitata collected from 74 populations covering the entire extant distribution range of the species. Our goal was to reconstruct the phylogeographical history of the species and, if possible, to identify its centre of origin, which has been a subject of controversy for many decades. We identified five haplotypes whose distribution is clearly geographically structured. Using several species of Adansonia and of closely related genera as outgroups, the haplotypes showed a clear phylogeographical pattern of three groups. Two are phylogenetically related to the outgroup taxa, and are distributed in West Africa. The third group is substantially more differentiated genetically from outgroup species, and it corresponds to southern and eastern Africa, Arabia and the Indian Ocean islands, including Madagascar. According to our results, the tetraploid A. digitata, or its diploid progenitor, probably originated in West Africa and migrated subsequently throughout the tropical parts of that continent, and beyond, by natural and human-mediated terrestrial and overseas dispersal.


Asunto(s)
Adansonia/genética , ADN de Cloroplastos/genética , Evolución Molecular , Filogenia , África Occidental , Genética de Población , Geografía , Germinación , Haplotipos , Polimorfismo de Longitud del Fragmento de Restricción , Agua de Mar , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...